Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2.
نویسندگان
چکیده
Organ detachment requires cell separation within abscission zones (AZs). Physiological studies have established that ethylene and auxin contribute to cell separation control. Genetic analyses of abscission mutants have defined ethylene-independent detachment regulators. Functional genomic strategies leading to global understandings of abscission have awaited methods for isolating AZ cells of low abundance and very small size. Here, we couple laser capture microdissection of Arabidopsis thaliana stamen AZs and GeneChip profiling to reveal the AZ transcriptome responding to a developmental shedding cue. Analyses focus on 551 AZ genes (AZ(551)) regulated at the highest statistical significance (P < or = 0.0001) over five floral stages linking prepollination to stamen shed. AZ(551) includes mediators of ethylene and auxin signaling as well as receptor-like kinases and extracellular ligands thought to act independent of ethylene. We hypothesized that novel abscission regulators might reside in disproportionately represented Gene Ontology Consortium functional categories for cell wall modifying proteins, extracellular regulators, and nuclear-residing transcription factors. Promoter-beta-glucuronidase expression of one transcription factor candidate, ZINC FINGER PROTEIN2 (AtZFP2), was elevated in stamen, petal, and sepal AZs. Flower parts of transgenic lines overexpressing AtZFP2 exhibited asynchronous and delayed abscission. Abscission defects were accompanied by altered floral morphology limiting pollination and fertility. Hand-pollination restored transgenic fruit development but not the rapid abscission seen in wild-type plants, demonstrating that pollination does not assure normal rates of detachment. In wild-type stamen AZs, AtZFP2 is significantly up-regulated postanthesis. Phenotype data from transgene overexpression studies suggest that AtZFP2 participates in processes that directly or indirectly influence organ shed.
منابع مشابه
Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants.
Abscission is an active process that enables plants to shed unwanted organs. Because the purpose of the flower is to facilitate pollination, it often is abscised after fertilization. We have identified an Arabidopsis ethylene-sensitive mutant, inflorescence deficient in abscission (ida), in which floral organs remain attached to the plant body after the shedding of mature seeds, even though a f...
متن کاملOverexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis.
Plants may shed organs when they have been injured or served their purpose. The differential pattern of organ abscission in different species is most likely the result of evolutionary adaptation to a variety of life styles and environments. The final step of abscission-related cell separation in floral organs of wild-type Arabidopsis thaliana, which only abscises sepals, petals, and stamens, is...
متن کاملThe EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2.
In Arabidopsis thaliana, the final step of floral organ abscission is regulated by INFLORESCENCE DEFICIENT IN ABSCISSION (IDA): ida mutants fail to abscise floral organs, and plants overexpressing IDA display earlier abscission. We show that five IDA-LIKE (IDL) genes are expressed in different tissues, but plants overexpressing these genes have phenotypes similar to IDA-overexpressing plants, s...
متن کاملHawaiian skirt: an F-box gene that regulates organ fusion and growth in Arabidopsis.
A fast neutron-mutagenized population of Arabidopsis (Arabidopsis thaliana) Columbia-0 wild-type plants was screened for floral phenotypes and a novel mutant, termed hawaiian skirt (hws), was identified that failed to shed its reproductive organs. The mutation is the consequence of a 28 bp deletion that introduces a premature amber termination codon into the open reading frame of a putative F-b...
متن کاملThe EVERSHED receptor-like kinase modulates floral organ shedding in Arabidopsis.
Plant cell signaling triggers the abscission of entire organs, such as fruit, leaves and flowers. Previously, we characterized an ADP-ribosylation factor GTPase-activating protein, NEVERSHED (NEV), that regulates membrane trafficking and is essential for floral organ shedding in Arabidopsis. Through a screen for mutations that restore organ separation in nev flowers, we have identified a leucin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 146 3 شماره
صفحات -
تاریخ انتشار 2008